Mesenchymal stem cells (MSCs) are a clinically attractive alternative to chondrocytes for the development of engineered cartilage tissue owing to their ease of isolation and chondrogenic potential [1]. However, the mechanical properties of MSC-based constructs have yet to match those of native cartilage or of chondrocyte-based constructs cultured similarly [1]. One route for improving these properties may be the application of mechanical stimulation, as normal cartilage development and homeostatic maintenance is dependent on force transduction. In a tissue engineering context, dynamic compression applied to chondrocyte-seeded hydrogels modulates both matrix production and mechanical properties [2, 3]. Similarly, when MSCs are embedded in 3D hydrogels, expression of chondrogenic markers and cartilaginous ECM synthesis are differentially regulated by dynamic compressive loading [4, 5]. Indeed, we have recently shown that long-term dynamic loading initiated after a pre-culture period of 21 days in pro-chondrogenic medium improves matrix distribution and the compressive properties of MSC-seeded constructs [5]. Interestingly, when loading was initiated after a single day of culture, mechanical properties failed to develop [6, 7], suggesting that elaboration of matrix was required prior to dynamic loading in order to positively direct construct maturation. When chondrocytes are embedded in agarose, the initial growth phase is characterized by the establishment of a dense pericellular matrix (PCM). At early times in culture, before these islands of PCM become connected into an interterritorial matrix, cells are protected from bulk deformation applied to the gel [8]. In a recent study, we showed that clonal heterogeneity in stem cell populations determines the rate at which this PCM forms, with some MSC clones rapidly establishing a dense PCM, while others fail to develop a robust PCM (and so continue to deform with gel deformation) through several weeks in culture [9]. To further this investigation, this study charted the culture time-dependent changes in ECM connectivity and MSC deformation under basal and chondrogenic conditions.
Skip Nav Destination
ASME 2010 Summer Bioengineering Conference
June 16–19, 2010
Naples, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4403-8
PROCEEDINGS PAPER
Micromechanical Deformation of Chondrogenic Mesenchymal Stem Cells in 3D Hydrogels is Modulated by Time in Culture and Matrix Connectivity
Megan J. Farrell,
Megan J. Farrell
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Tiffany L. Zachry,
Tiffany L. Zachry
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Robert L. Mauck
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Megan J. Farrell
University of Pennsylvania, Philadelphia, PA
Tiffany L. Zachry
University of Pennsylvania, Philadelphia, PA
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Paper No:
SBC2010-19534, pp. 985-986; 2 pages
Published Online:
July 15, 2013
Citation
Farrell, MJ, Zachry, TL, & Mauck, RL. "Micromechanical Deformation of Chondrogenic Mesenchymal Stem Cells in 3D Hydrogels is Modulated by Time in Culture and Matrix Connectivity." Proceedings of the ASME 2010 Summer Bioengineering Conference. ASME 2010 Summer Bioengineering Conference, Parts A and B. Naples, Florida, USA. June 16–19, 2010. pp. 985-986. ASME. https://doi.org/10.1115/SBC2010-19534
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Related Chapters
Effects of Ultrasound Stimulation on Chondrocytes in Three-Dimensional Culture in Relation to the Production of Regenerative Cartilage Tissue
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Chick Embryo Limb Bud Cell Culture for Screening Environmental Contaminants
Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment Sixth Volume