The motion patterns of the human knee joint depend on its passive motion characteristics, which are described by the ligamentious and articular constraints. Since active motions, like walking and squatting are believed to fall within a passive envelope, the basis for the understanding of the knee joint kinematics lies in the description of its passive constraint characteristics [1]. The link between the knee passive envelope and the kinematics during various dynamic activities has not been studied. It is unclear how the articular geometry and muscle activations of the knee influence the contribution of ligament constraints during dynamic activities. To explain the relationship between knee passive envelope and dynamic activities completely, new methodology must be developed. The objective of the present study was to estimate the effects of variation in passive knee envelope on the tibiofemoral kinematics during dynamically simulated gait using a multivariate analysis technique, principal component (PC) analysis.

This content is only available via PDF.
You do not currently have access to this content.