Previous studies have shown that the age-related increase in bone porosity results a decrease in bone strength, and porosity is related to the volume of mobile water in the pores. In addition, since water is also bound to collagen and mineral, changes in the amount of bound water will potentially affect the bone strength. It is known that the removal of the loosely bound water (via hydrogen bonding) requires less energy than the water molecules trapped inside collagen molecules, which in turn requires similar or less energy than water molecules bound to the surface charges of mineral apatite (more ionic in nature). Also, water that is imbedded in the lattice of hydroxyapatite (more covalent in nature) requires the highest energy to dislodge. However, there is no traditional method that can determine mobile and bound water, further for loosely and tightly bound ware accurately, non-destructively and non-invasively. Here, we propose that by using NMR Car-Purcell-Meiboom-Gill (CPMG) spin-spin relaxation measurement to determine the mobile water, and the NMR inversion T2-FID spectrum derived from NMR free induction decay (FID) measurements for estimating the bound and free water distribution. Furthermore, after comparison of the total water lost (weighing method) within tissue by using drying (free dry) on the air to the total mobile water lost measured by NMR CPMG method, then, the total loosely bound water lost can be estimated. Following this, the mechanical test will be used to evaluate the bone quality related to the tightly and loosely bound water within bone. This information can be used to further assessment of bone quality.

This content is only available via PDF.
You do not currently have access to this content.