Detailed knowledge of the fate of aerosols in the lung is essential in understanding the effect of exposure to airborne particulate matter and infectious agents and in assessing the efficiency of inhaled drug therapy. Detailed, yet non-invasive, studies of peripheral aerosol deposition are almost impossible in humans. Thus, understanding the fate of aerosols in the lung requires the use of computational and/or animal models in which more invasive techniques can be used. In this study, using magnetic resonance (MR) images of rat lungs, we (1) built three dimensional (3D) models of the airway tree and (2) quantified lobar volumes. Flow simulations were then performed in one of the airway models. Flow conditions were set to be similar to that used in an experimental study where rats were exposed to aerosols [1]. Airflow boundary conditions at the outlets of the airways are unknown and therefore typically a zero pressure boundary condition is prescribed [2]. To test the validity of the zero pressure condition, two types of boundary conditions were described: (a) zero pressure at each of the outlets and (b) flow resistance at each outlet. Flow resistance allows for the flow rate distribution to be defined based on lung volume and airway cross sectional area. The flow results from the computational model may be used to solve the particle dynamics equation and therefore allow for future comparison with the ventilation experiments.
Skip Nav Destination
ASME 2010 Summer Bioengineering Conference
June 16–19, 2010
Naples, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4403-8
PROCEEDINGS PAPER
Image-Based Morphometry and Airflow Simulation in Rat Lungs
Jessica M. Oakes,
Jessica M. Oakes
University of California, San Diego, La Jolla, CA
Search for other works by this author on:
Alison L. Marsden,
Alison L. Marsden
University of California, San Diego, La Jolla, CA
Search for other works by this author on:
Miriam Scadeng,
Miriam Scadeng
University of California, San Diego, La Jolla, CA
Search for other works by this author on:
Chantal Darquenne
Chantal Darquenne
University of California, San Diego, La Jolla, CA
Search for other works by this author on:
Jessica M. Oakes
University of California, San Diego, La Jolla, CA
Alison L. Marsden
University of California, San Diego, La Jolla, CA
Miriam Scadeng
University of California, San Diego, La Jolla, CA
Chantal Darquenne
University of California, San Diego, La Jolla, CA
Paper No:
SBC2010-19561, pp. 655-656; 2 pages
Published Online:
July 15, 2013
Citation
Oakes, JM, Marsden, AL, Scadeng, M, & Darquenne, C. "Image-Based Morphometry and Airflow Simulation in Rat Lungs." Proceedings of the ASME 2010 Summer Bioengineering Conference. ASME 2010 Summer Bioengineering Conference, Parts A and B. Naples, Florida, USA. June 16–19, 2010. pp. 655-656. ASME. https://doi.org/10.1115/SBC2010-19561
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Optimal Drug-Aerosol Delivery to Predetermined Lung Sites
J. Heat Transfer (January,2011)
Targeted Drug Aeroso Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors
J Biomech Eng (April,2003)
Computational Fluid Dynamics Simulations of Particle Deposition in Large-Scale, Multigenerational Lung Models
J Biomech Eng (January,2011)
Related Chapters
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Pulsating Supercavities: Occurrence and Behavior
Proceedings of the 10th International Symposium on Cavitation (CAV2018)