An accurate model of the human respiratory system allows health scientists to gain insight into the interactions between particulate matter (PM) and the exposed surfaces of the lung airways. Respiratory dose simulations and modeling are frequently used for evaluating health effects of inhaled toxic substances [1–4] and for analyzing the risk potentials of inhaled toxic or harmful PM such as vehicle emissions [4,5]. Pharmaceutical companies and pulmonologists find it useful in evaluating efficacy of inhaled medicinal aerosols and devising new patient treatment regimen [6–8], especially in vulnerable population groups such as children, industrial workers, and the elderly [10]. Recently, the respiratory system has seen increased attention as a possible venue for drug delivery to fight diseases such as AIDS, diabetes, and various cancers, among others. Computational fluid dynamics modeling and simulation continues to be an important tool for understanding of delivery of pharmaceutical aerosols to the lung airways and thereby improving treatment of airway disease, particularly, asthma with bronchodilators and corticosteroids inhalers [11,12].

This content is only available via PDF.
You do not currently have access to this content.