Surgical treatment of severe functional mitral regurgitation (MR) often involves mitral annuloplasty, a procedure where a flexible or rigid annuloplasty ring is used to downsize the dilated mitral valve annulus (MA) and improve leaflet apposition by posterior annular correction. Recently various minimally invasive percutaneous transvenous mitral annuloplasty (PTMA) devices have been tested in patients who are not suitable candidates for a surgical procedure involving a thoracotomy. The approach is based on the concept that by utilizing the parallel location of the coronary sinus (CS) to the mitral annulus, a device, that can reshape the annulus, can be percutaneously deployed within the coronary sinus (CS) and the great cardiac vein (GCV). When the implanted device deforms, it shortens the MA anterior-posterior dimension and decreases mitral regurgitation (MR) (Fig. 1). Although the approach has been shown to be promising, PTMA device dysfunction and fatigue fracture have been reported in several firstin-human clinical trials (1). We hypothesize that quantitative understanding of the biomechanical interaction between the venous tissue, the mitral improve the efficacy of the PTMA treatment of MR. In this study, we aim to model interactions between the PTMA proximal anchor and the CS using computational tools.
Skip Nav Destination
ASME 2010 Summer Bioengineering Conference
June 16–19, 2010
Naples, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4403-8
PROCEEDINGS PAPER
Modeling the Interaction Between the Coronary Sinus and the Proximal Anchor Stent in Percutaneous Transvenous Mitral Annuloplasty Available to Purchase
Milton DeHerrera
Milton DeHerrera
Edwards Lifesciences LLC, Irvine, CA
Search for other works by this author on:
Wei Sun
University of Connecticut, Storrs, CT
Milton DeHerrera
Edwards Lifesciences LLC, Irvine, CA
Paper No:
SBC2010-19715, pp. 105-106; 2 pages
Published Online:
July 15, 2013
Citation
Sun, W, & DeHerrera, M. "Modeling the Interaction Between the Coronary Sinus and the Proximal Anchor Stent in Percutaneous Transvenous Mitral Annuloplasty." Proceedings of the ASME 2010 Summer Bioengineering Conference. ASME 2010 Summer Bioengineering Conference, Parts A and B. Naples, Florida, USA. June 16–19, 2010. pp. 105-106. ASME. https://doi.org/10.1115/SBC2010-19715
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
An Efficient and Accurate Prediction of the Stability of Percutaneous Fixation of Acetabular Fractures With Finite Element Simulation
J Biomech Eng (September,2011)
FSI Analysis of a Human Trachea Before and After Prosthesis Implantation
J Biomech Eng (July,2011)
On Modeling Assumptions in Finite Element Analysis of Stents
J. Med. Devices (September,2011)
Related Chapters
mDFA Human Empirical Results
Modified Detrended Fluctuation Analysis (mDFA)
Introduction and Definitions
Handbook on Stiffness & Damping in Mechanical Design