Osmotic stress affects biological function in articular chondrocytes and plays an important role in mechanotransduction in articular cartilage. One potential pathway for osmotic sensitivity in chondrocytes is direct deformation of the nucleus by osmotic stress [1,2]. However, the mechanism of this phenomenon is currently unclear. The nucleus is not contained within a semi-permeable lipid bilayer as are most osmotically sensitive organelles. It is conceivable that fixed charges in chromatin might attract dissolved ions and render it osmotically sensitive. However, this model cannot account for the abolition of the osmotic sensitivity of the nucleus by permeabilization of the cell membrane [3]. The goal of this study was to characterize the osmotic sensitivity of the chondrocyte nucleus and determine the underlying mechanism.

This content is only available via PDF.
You do not currently have access to this content.