Endosseous dental implants are used as prosthetic treatment alternatives for treating partial edentulism [1]. Excellent long term results and high success rates have been achieved using dental implants during the past decades. Further improvements in implant protocols will include immediate loading, patient specific implants, applications for patients with extreme bone loss and extreme biting habits such as bruxism. The implant designs available in the market vary in size, shape, materials and surface characteristics [2], and address some of these concerns. An important factor in the implant design is the load transfer from the implant to bone during occlusal loading.[2,3] Load transfer starts along the bone-implant interface, and is affected by the loading type, material properties of the implant and prosthesis, implant geometry, surface structure, quality and quantity of the surrounding bone, and nature of the bone-implant interface [4]. While many studies using the finite element method (FEM) have been carried out [2–5], a systematic investigation of the load transfer at the bone implant interface, and the effects of various parameters that make the implant contour is lacking. The goal of this paper is to investigate one aspect of this multivariable problem, namely the effect of external implant threads on the load transfer along the bone-implant interface.

This content is only available via PDF.
You do not currently have access to this content.