Liquid-liquid extraction techniques are one of the major tools in chemical engineering, analytical chemistry, and biology, especially in a system where two immiscible liquids have an interface solutes exchange between the two liquid phases along the interface up to a point where the concentration ratios in the two liquids reach their equilibrium values [1]. Solutes including nucleic acids and proteins of interests can be extracted from one liquid phase to the other immiscible liquid phase as a preparation step for many analytical processes.

There are several advantages in miniaturizing the liquid-liquid extraction methods to on-chip level extraction. Usual advantages of miniaturization are the reduction in the sample size and portability. In addition, transport phenomena is faster in Micro-systems than in ordinary size systems, and therefore, one may expect that liquid-liquid extraction takes less time to achieve in miniaturized devices. It is due to shorter diffusion time in micro scale as well as high surface to volume ratio of Microsystems.

Electrowetting on dielectric (EWOD) digital microfluidics is an efficient platform to process droplet based analytical processes [2]. Nanoliter (nL) or smaller volume of aqueous liquid droplets can be generated and transported on a chip by EWOD process. In addition to the high surface to volume ratio, high chemical potential can be expected in droplet based extraction when the droplets are in motion.

In this paper, we propose to use room temperature ionic liquid (RTIL) as a second liquid phase for extraction, which forms immiscible interface with aqueous solutions. Properties of RTIL can be tailored by choice of cation, anion and substituents. RTIL has been investigated as replacements for the organic solvents and various “task-specific” ionic liquid are being developed which exhibit many attractive properties such as very low vapor pressure, high thermal stability [3]. We recently published EWOD properties of various RTILs toward microfluidic applications [4]. To demonstrate liquid-liquid micro extraction on chip, we fabricated and tested EWOD digital microfluidic devices. Fig. 1 shows (a) top and (b) cross sectional views of EWOD device. Two model extraction systems were tested. One is organic dye extracted from RTIL (1-butyl-3-methylimidazolium bis(trifluoromethanesulfonylimide or BMIMNTf2) to water and the other is iodine (I2) extracted from water to BMIMNTf2. The later model experiment is demonstrated in Fig. 2. Droplets of aqueous solution and BMIMNTf2 solution were generated on chip reservoir then transported for extraction and separated by EWOD actuation. When an aqueous solution and BMIMNTf2 solution join together, they created an interface, since water and BMIMNTf2 are immiscible. Extraction of I2 was done along the interface. After successful extraction, two immiscible liquid phases were separated by EWOD actuation and formed two separate droplets. From the result shown in Fig 2 (g), it is expected that extraction performance at the interface of moving droplet would be enhanced compared to the stationary droplet, because a moving interface prevent the chemical equilibrium, thus more chemical extraction potential can be provided with a moving interface than at a stationary interface.

This demonstration is the first step toward total analysis system. The presented result opens the way to on-chip micro extraction, which will be readily integrated with other sample preparation microfluidic components and detection components. Currently, micro extraction systems for larger molecules such as nucleic acids, proteins and biological cells are being developed for further analytical applications.

This content is only available via PDF.
You do not currently have access to this content.