Generation of a complete map of arterial wall mechanical properties can improve treatment of cardiovascular diseases via contributions to design of patient specific vascular substitutes used to alleviate atherosclerosis and stenoses, which are predominant in arterial pathways (i.e., abdominal aorta, carotids, or femoral arteries). Clinically useful estimation of arterial properties from patient data requires both efficient algorithms and models that are both complex enough to capture clinically important properties and simple enough to allow rapid computation. In this study, we used mechanical models accounting for both elastic and viscoelastic wall deformation to analyze how vessel properties and associated model parameters vary with artery type. It is known that for the aorta wall, deformation is dominated by nonlinear elastic dynamics, while for the smaller vessels (e.g. the carotid artery) deformation is dominated by viscoelastic responses. The latter is correlated with composition of the vessels; the aorta contains significantly less smooth muscle cells (∼40%) than the carotid artery (∼60%), and has significantly more elastin (see Fig 1).

This content is only available via PDF.
You do not currently have access to this content.