It is well known that various fibrous tissue such as tendons and ligaments functionally adapt to dynamic and static loads. Although a variety of biomechanical studies have been done to deterimine the mechanism of remodeling in fibrous tissues, it was difficult to obtain detailed information because of complicated condstitution of the tissues. We have developed a stem cell-based self-assembled tissue (scSAT) [1] for tissue engineering. Since the scSAT is consisted of synovium-derived mesenchyaml stem cells and their native extracellular matrix, it is a good experimental model to determine the process of remodeling of fibrous tisues. However, the response of shear stress to the scSAT specimen has not been determined so far, although such data are important for understanding of soft tissue remodeling and for improvement of regenerative medicine. Therefore, the present study was performed to determine the effect of shear stress on the extracellular matrix production of synovium-derived cells including mesenchymal stem cells.

This content is only available via PDF.
You do not currently have access to this content.