Articular cartilage has superior functions such as impact absorption and low friction, although their healing capacities are limited. It is one of potential options for the repair of articular cartilage to use cell-based therapies. We have been developing a novel tissue-engineering technique for the repair of cartilage which involves a stem cell-based self-assembled tissue (scSAT) derived from synovium. As the scSAT is a scaffold-free contrust composed of cells with their native extracellular matrix, it is free from concern regarding long-term immunological effects. The scSAT is expressed as tissue engineered construct (TEC) when it is used for cartilage repair. Previous studies indicated that the mechanical properties of cartilage-like tissues repaired using the scSAT were slightly inferiorer to those of normal cartilage. We have a hypothesis that the mechanical properties of the cartilage-like tissues are improved if the scSAT is subjected to an adequate compressive stimulation in vitro before implantation. The present study was conducted as a preliminary study to determine whether static compression improves the mechanical property of the scSAT for more advanced regenerative medicine to cartilage injuries and degeneration.

This content is only available via PDF.
You do not currently have access to this content.