Musculoskeletal adaptations to aging and disuse environment have significant physiological effects on skeletal health, i.e., osteopenia and bone loss. Osteoporosis often occurs together with muscle loss. Such musculoskeletal complications cause severe physiologic changes and have been proposed the synergistic effects of muscle function and bone adaptation. The role of mechanobiology in the skeletal tissue may be closely related to load-induced transductive signals, e.g., bone fluid flow, which is proposed to be a critical mediator of bone and muscle adaptation. The skeletal muscle may serve as a muscle pump that may mediate bone mechanotransduction via modulation of intramedullary pressure. Muscular stimulation (MS) is proposed to be used to simultaneously treat both muscle and bone loss. Indeed, our recent data have demonstrated that high frequency, short duration stimulation can inhibit bone loss and muscle atrophy. Although 10 min dynamic loading can effectively attenuate bone loss, it cannot totally recover disuse osteopenia. The optimal parameters required for such treatment are unclear. Studies have separately investigated the optimal signal parameters for bone or muscle. Insertion of recovery periods during high frequency stimulations to extend the loading cycles have shown potential to reduce muscle atrophy by minimizing fatigue and mimicking physiologic contractions, and demonstrated enhancement of bone remodeling. The overall hypothesis for this study is that dynamic MS can enhance anabolic activity in bone, and inhibit bone loss in a functional disuse condition. Combined high frequency and sufficient loading cycle may be able to completely mitigate bone loss induced by disuse osteopenia.

This content is only available via PDF.
You do not currently have access to this content.