The use of natural and synthetic polymers as scaffolding material for regenerative medicine is far from clinical translation for most tissue applications. This is due primarily to lack of manufacturing control over mechanical properties and 3D architecture which promote cell attachment and proliferation. Cellulose, a natural polymer produced by the majority of plants, can be assembled into nanofibrils by bacteria. The advantage of bacterial cellulose is that it has unique biocompatibility, mechanical integrity, hydroexpansivity, and is stable under a wide range of conditions [1]. It is thus ideal as a scaffolding material on which to seed cells for regenerative medicine applications. The bacteria Acetobacter Xylinum produces nanoscale cellulose ribbons at an average rate of 2μm/min [2].

This content is only available via PDF.
You do not currently have access to this content.