Glaucoma is one of the leading causes of blindness in the United States and in the world [1]. It is caused by damage to the retinal ganglion cells (RGC), a type of neuron that transmits visual information to the brain. Despite therapeutic efforts to reduce the rate of vision loss in glaucoma patients, the rate of blindness remains high [2]. There is evidence that elevated intraocular pressure (IOP) plays an important role in the damage to RGCs [3–5], but the relationship between the mechanical properties of the connective tissue and how it affects the cellular function is not understood. The load-bearing eye wall consists of the cornea and the sclera. Both tissues are collagen rich structures with preferentially aligned collagen lamellae dictating its mechanical response. Previous studies have shown that the viscoelastic material response of the eye wall differs between normal and glaucoma animal tissues [6]. However, these previous studies relied on strip testing of tissue samples.

This content is only available via PDF.
You do not currently have access to this content.