The brain is the control center for the central nervous system (CNS), and it is composed of specialized divisions that are attributed to a vast assortment of structural, homeostatic, and cognitive functions. These distinct regions are surrounded by supportive tissue and comprised of a complex arrangement of neurons that can be further categorized as either gray or white matter. The cerebrum constitutes the larger surrounding portion of the forebrain and includes sinuous ridges called gyri that are separated by grooves or fissures called sulci. The intermediate layer of the cerebrum primarily consists of white matter tracts that are responsible for integrating various regions throughout the cerebrum. The innermost and outermost layers of tissue mainly contain gray matter and are collectively known as the subcortical nuclei and cerebral cortex, respectively, which are crucial integrating components of the CNS [1]. An investigation into the mechanical properties of this vital organ coupled with microstructural characterization of its constituents under varying deformation levels is therefore crucial for implementing more accurate prediction and prevention of traumatic brain injury (TBI).

This content is only available via PDF.
You do not currently have access to this content.