Recent studies have shown that its necessary for synthetic matrix to provide similar mechanical response as cell’s host environment in the body for desired tissue growth [1,2]. Osteoblast cells reside in the rigid matrix made of collagen fibers and hydroxyapatite crystals. Therefore for the growth of proper functional bone tissue, its utmost necessary that scaffolds provide mechanical response similar to bone matrix. Bone also serves as a mechanical support to the body. Thus scaffolds used for bone tissue engineering should also provide adequate mechanical support to prevent collapse of the neonatal tissue. The mechanical response of scaffolds decreases significantly as porosity increases. The porosity of scaffold around 90% has been considered optimal for tissue engineering. At such high porosity, the mechanical strength and elastic modulus decreases significantly. Various polymers both of synthetic and biological origin have been investigated as a material for scaffold [3]. Synthetic polymers are biodegradable, biocompatible, and can be easily formed into different shapes and sizes. However, hydrophobicity, lack of functional groups and release of acidic products on degradation are causes of concern. Biopolymers such as collagen, chitin, chitosan etc. promote cell adhesion, proliferation and differentiation, and evoke minimal foreign body reaction on implantation [4]. But, they have inadequate mechanical properties for bone regeneration and tend to loose structural integrity under wet and body fluid conditions. The quest for scaffold materials which, not only promote cell adhesion, proliferation and differentiation but also have adequate mechanical strength to support bone tissue growth is still on. In the current work, we discuss the synthesis and characterizations of nanocomposites based on biopolymers and hydroxyapatite. The biopolymers used are chitosan and polygalacturonic acid. These two biopolymers are biocompatible, biodegradable and electrostatically complementary to each other. We have also investigated the molecular mechanics involved in their mechanical behavior. Their in vitro response have been investigated by seeding human Osteoblast cells and studying their adhesion, proliferation and differentiation. Synthesis and characterizations of nanostructured fibers based on chitosan and polygalacturonic acid will also be discussed here.
Skip Nav Destination
ASME 2009 Summer Bioengineering Conference
June 17–21, 2009
Lake Tahoe, California, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4891-3
PROCEEDINGS PAPER
Biopolymer Polyelectrolyte Complex Nanocomposites for Bone Tissue Engineering
Devendra Verma,
Devendra Verma
North Dakota State University, Fargo, ND
Search for other works by this author on:
Kalpana Katti,
Kalpana Katti
North Dakota State University, Fargo, ND
Search for other works by this author on:
Dinesh Katti
Dinesh Katti
North Dakota State University, Fargo, ND
Search for other works by this author on:
Devendra Verma
North Dakota State University, Fargo, ND
Kalpana Katti
North Dakota State University, Fargo, ND
Dinesh Katti
North Dakota State University, Fargo, ND
Paper No:
SBC2009-206390, pp. 1185-1186; 2 pages
Published Online:
July 19, 2013
Citation
Verma, D, Katti, K, & Katti, D. "Biopolymer Polyelectrolyte Complex Nanocomposites for Bone Tissue Engineering." Proceedings of the ASME 2009 Summer Bioengineering Conference. ASME 2009 Summer Bioengineering Conference, Parts A and B. Lake Tahoe, California, USA. June 17–21, 2009. pp. 1185-1186. ASME. https://doi.org/10.1115/SBC2009-206390
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Nanoclay Based Composite Scaffolds for Bone Tissue Engineering Applications
J. Nanotechnol. Eng. Med (August,2010)
Novel Natural Transdermal Otoliths/Collagen/Bacterial Cellulose Patch for Osteoporosis Treatment
J. Nanotechnol. Eng. Med (August,2011)
Solid Freeform Fabrication of Polycaprolactone∕Hydroxyapatite Tissue Scaffolds
J. Manuf. Sci. Eng (April,2008)
Related Chapters
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies