It is well accepted that fluid flow is an important mechanical signal in regulating bone structure and function. Primary cilia, which are solitary, microtubule-based organelles that extend from the centrosome into extracellular space in many cell types, have been shown to mediate fluid flow-induced osteogenic responses in MLO-Y4 osteocyte-like cells [1], however, primary cilia did not mediate increases in intracellular Ca2+ concentration [1]. Recently, we identified cAMP as a novel early signaling molecule in primary cilia-dependent mechanotransduction of fluid flow in osteocytes. Specifically, we show that MLO-Y4 osteocyte-like cells respond to oscillatory flow with a rapid decrease in intracellular levels of cAMP that is dependent on the primary cilium [2]. Adenylyl cyclase 6 (AC6) is an enzyme responsible for the synthesis of cAMP from ATP. We found that AC 6 localizes to the primary cilium of bone cells (Fig. 1). In this study, our goal was to determine whether AC6 mediates the primary cilia-dependent, flow-induced decrease in cAMP.

This content is only available via PDF.
You do not currently have access to this content.