The spatial organization of the genome influences its function [1]. Therefore, physical signals that deform the nucleus and the genome within may directly affect gene transcription and translation. In articular chondrocytes, nuclear deformation in response to osmotic stress is not sensitive to actin organization [2]. However, articular chondrocytes differ from most mammalian cells in that they remain round with cortically organized actin in monolayer culture. Adherent cells such as adipose stem cells (ASCs) spread in monolayer culture, forming a more typical, highly bundled actin cytoskeleton. These actin bundles exert tensile stress on the nucleus so we hypothesized that the osmotic sensitivity of the cell nucleus would be modulated by actin organization in ASCs. The osmotic sensitivity of the nucleus was quantified by measuring changes in the size and shape of the nucleus and the spatial arrangement of the chromatin within using 3D confocal microscopy.

This content is only available via PDF.
You do not currently have access to this content.