Heart disease is the primary cause of death in industrialized nations. In 2007 alone, an estimated 79 million adults in the U.S., one in three, had one or more types of cardiovascular disease, generating health care costs in excess of $430 billion. A leading cause of congestive heart failure is myocardial infarction. Within the first few hours after the infarct, a complex cascade of events is initiated in the myocardium manifesting itself clinically in disproportionate thinning and dilation of the infarct region accompanied by distortion in form and function of the entire heart, figure 1. As remodeling progresses, volume-overloaded hypertrophy and further deterioration of cardiac function are common natural consequences. Historically, therapies for myocardial infarction have been developed by trial and error methods, as opposed to therapy design and development through scientific understanding of the functional and structural changes in the infarcted tissue. Continuum theories, in combination with modern computer simulation technologies, offer the potential to provide greater insight into the complex pathways of myocardial infarction, and thereby guide the design of successful post-infarction therapies such as direct cell injection into the damaged myocardium1 and implantation of tissue engineered vascular grafts2 as sketched in figure 1.
Skip Nav Destination
ASME 2008 Summer Bioengineering Conference
June 25–29, 2008
Marco Island, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4321-5
PROCEEDINGS PAPER
How to Treat the Loss of Beat: Modeling and Simulation of Ventricular Growth and Remodeling and Novel Post-Infarction Therapies
Serdar Goktepe,
Serdar Goktepe
Stanford University, Stanford, CA
Search for other works by this author on:
Joseph P. Ulerich,
Joseph P. Ulerich
Stanford University, Stanford, CA
Search for other works by this author on:
Ellen Kuhl
Ellen Kuhl
Stanford University, Stanford, CA
Search for other works by this author on:
Serdar Goktepe
Stanford University, Stanford, CA
Joseph P. Ulerich
Stanford University, Stanford, CA
Ellen Kuhl
Stanford University, Stanford, CA
Paper No:
SBC2008-193159, pp. 971-972; 2 pages
Published Online:
March 13, 2014
Citation
Goktepe, S, Ulerich, JP, & Kuhl, E. "How to Treat the Loss of Beat: Modeling and Simulation of Ventricular Growth and Remodeling and Novel Post-Infarction Therapies." Proceedings of the ASME 2008 Summer Bioengineering Conference. ASME 2008 Summer Bioengineering Conference, Parts A and B. Marco Island, Florida, USA. June 25–29, 2008. pp. 971-972. ASME. https://doi.org/10.1115/SBC2008-193159
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Multimodal Automated Quantitative Sensory Testing System for Pain Research
J. Med. Devices (June,2011)
Evolution of a Non-Invasive Method for Providing Assistance to the Heart
J. Med. Devices (June,2009)
The Evolution of the External Left Ventricular Assist Device
J. Med. Devices (June,2010)
Related Chapters
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Experimental Studies
Nanoparticles and Brain Tumor Treatment
Pressure Waves for Diagnostics and Therapy
Pressure Oscillation in Biomedical Diagnostics and Therapy