During tensile testing along the predominant collagen fiber direction, ligament and tendon tissue exhibit large Poisson’s ratios ranging from 1.3 in capsular ligament to 2.98 in flexor tendon [1][2]. Although the microstructure of these tissues (especially fiber crimp) has been characterized, the relationship between microstructure and Poisson’s ratio is relatively unexplored. There has been debate regarding the exact nature of the characteristic crimp within tendon fibers, however the two views most present in the literature are that of planar crimp and helical crimp. The aim of this study was to perform a finite element analysis on prototypical models of fibril bundles for both forms of crimp under tensile loading conditions. It was hypothesized that planar crimp alone would be insufficient for generating large Poisson’s ratios, and that some other microstructure (such as a helix) would be required.

This content is only available via PDF.
You do not currently have access to this content.