Many studies have used musculoskeletal models to predict in vivo muscle forces at the knee during gait [1, 2]. Unfortunately, quantitative assessment of the model calculations is often impracticable. Various indirect methods have been used to evaluate the accuracy of model predictions, including comparisons against measurements of muscle activity, joint kinematics, ground reaction forces, and joint moments. In a recent study, an instrumented hip implant was used to validate calculations of hip contact forces directly [3]. The same model was subsequently used to validate model calculations of tibiofemoral loading during gait [4]. Instrumented knee implants have also been used in in vitro and in vivo studies to quantify differences in biomechanical performance between various TKR designs [5, 6]. The main aim of the present study was to evaluate model predictions of knee muscle forces by direct comparison with measurements obtained from an instrumented knee implant. Calculations of muscle and joint-contact loading were performed for level walking at slow, normal, and fast speeds.

This content is only available via PDF.
You do not currently have access to this content.