Non-uniform extravasation from blood vessels, elevated interstitial fluid pressure (IFP), and transport by bulk fluid motion in the extracellular space have all been determined to contribute to the non-uniform tissue distribution of systemically delivered agents in solid tumors. The aforementioned factors can lead to inadequate and uneven uptake in tumor tissue which has been shown to be a major obstacle to macromolecules in clinical cancer therapy [1]. Recently developed computational tumor models have described blood flow either in a single vessel or capillary network with variations in space and time [2]. These studies do not account for heterogeneous tissue transport properties in regions of leakier vessels [3].

This content is only available via PDF.
You do not currently have access to this content.