Embryonic stem cells (ESCs) have the potential to differentiate into all somatic cell types and are uniquely capable of differentiating into functional cardiomyocytes; however, to effectively use ESCs for cell-based therapies to regenerate viable myocardial tissue, an improved understanding of mechanisms regulating differentiation is necessary. Currently, application of exogenous factors is commonly attempted to direct stem cell differentiation; however, progression towards controlling multiple environmental factors, including biochemical and mechanical stimuli, may result in increased differentiation efficiency for clinical applications. Additionally, current methods of ESC differentiation to cardiomyocytes are labor-intensive and produce relatively few cardiomyocytes based on initial ESC densities. Rotary suspension culture to produce embryoid bodies (EBs) has been shown to yield greater numbers of differentiating ESCs than static suspension cultures [1]. Thus, the objective of this study was to examine how the hydrodynamic mixing conditions imposed by rotary orbital culture modulate cardiomyocyte differentiation.

This content is only available via PDF.
You do not currently have access to this content.