Silica-calcium phosphate nanocomposite (SCPC) has a superior bone regenerative capacity and resorbability when compared to hydroxyapatie (HA) and bioactive glass [1–2]. Synthesis of SCPC bioceramics with superior mechanical properties has been an important and challenging issue. Ideally, the mechanical strength of the orthopedic implantat should be comparable to that of the host-bone in order to provide structural support and minimize stress shielding. The compressive strength of trabecular bone ranges from 2–12 MPa and that of cortical bone varies in the range of 100–230 MPa [3]. The aim of the present study is to study the effect of processing parameters on the mechanical properties of SCPC cylinders prepared by powder metallurgy technique. The mechanical properties were correlated to the microstructure of SCPC prepared under different processing conditions.

This content is only available via PDF.
You do not currently have access to this content.