Irreversible electroporation (IRE) is a method to kill cells by exposing the cell to intense electric field pulses[1]. It is postulated that the lipid bilayer rearranges to create permanent defects in the cell membrane which eventually leads to cell death via necrosis[1]. We postulate that the recurrence of cancer for patients treated for the disease would be minimized if their blood was monitored using a microdevice which would destroy existing or new exfoliated cancer cells. Dielectrophoresis (DEP) is the motion of polarizable particles that are suspended in an electrolyte when subjected to a spatially nonuniform electric field [2]. Insulator-based DEP uses insulating structures rather than electrode arrays to produce the nonuniform fields needed to drive DEP. We hypothesize that iDEP can enable the selective IRE of a particular cell type within a microfluidic platform. This manuscript demonstrates through modeling the feasibility of coupling iDEP with IRE using an AC field with a DC offset. Such a platform could be used to selectively destroy isolate cancer cells while not affecting normal cells.

This content is only available via PDF.
You do not currently have access to this content.