Collagen is one of the most important structural proteins in vertebrate animals. Over 25 different types of collagen have been identified, but type I collagen is the most abundant fibril forming collagen and contributes to the structural performance numerous connective tissues including ligaments, tendons and cornea [1]. In addition to collagen self-assembly, collagen degradation is an important step in the development, remodeling, homeostasis and pathology of load-bearing ECM. Matrix Metalloproteinase (MMP) types I and VIII, bacterial collagenase and cathepsin are the best known enzymes capable of directly degrading the collagen triple helix [2, 3]. Several researchers have hypothesized that straining collagen fibrils makes them less susceptible to enzymatic degradation [4, 5]. This concept, which we refer to as “strain-stabilization” has important implications for our understanding of collagen as an engineering material.

This content is only available via PDF.
You do not currently have access to this content.