Load-bearing tissues owe their mechanical properties to the presence of highly-organized arrays of collagen fibrils. Aligned lamellae in cornea and aligned fascicles in tendon are the best examples of collagen fibrillar organization at the macroscopic level. The process by which collagen is organized in the extracellular matrix (ECM) is still unclear. But it is generally thought to be facilitated locally via “fibripositors” or cell surface “crypts”. According to this theory, fibroblasts create bounded “compartments” in the ECM through which they deposit organized groups of fibrils (in the form of lamellae in the cornea and in the form of fascicles in the tendon) [1, 2]. An alternative hypothesis proposed by Marie Giraud-Guille suggests that fibroblasts concentrate collagen monomers to form cholesteric liquid crystalline patterns that resemble those found in collagenous matrices in vivo [3–8]. Such organization has been demonstrated in vitro using extracted collagen monomers. However, the data presented in these studies focuses principally on the alignment of the collagen molecules and not on the organization and resulting morphology of condensed collagen fibrils. Considering that matrix mechanical properties in vivo are the result of the fibrillar alignment and not the alignment of individual molecules, further investigation of cholesterically organized condensed fibrils and their morphology is necessary.

This content is only available via PDF.
You do not currently have access to this content.