Remodeling of arteries in response to altered loads is an area of intense interest to cardio-vascular clinicians and researchers. In humans, changes due to cardiovascular diseases (e.g. aortic dilatation) may occur slowly over many years, and mathematical models that describe the remodeling response are needed for predicting the course, and possible treatment, of these diseases. Recently, Humphrey and coworkers have proposed constrained mixture models [1] that can describe these acute and chronic changes[2, 3]. These models consider local stresses in the arterial wall to be the sum of individual contributions from collagen, elastic fibers, and vascular smooth muscle cells (VSMCs) Therefore, the mechanical behavior of VSMCs (presumed to be mechanically in parallel) should be independent of the exact composition of the extracellular matrix (ECM) at any specified stage of tissue remodeling. Previously we have studied the mechanics of VSMCs in 3-D bio-artificial tissue constructs made with collagen [4]. In this study, we made 3-D constructs using fibrin, and investigated whether VSMC morphology and mechanics are dependent on the ECM composition. Because previous studies have shown that VSMCs respond to cyclic stretch by increasing alignment and extra-cellular matrix production[5], we measured the mechanical responses of the VSMCs under continuous cyclic stretch.
Skip Nav Destination
ASME 2008 Summer Bioengineering Conference
June 25–29, 2008
Marco Island, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4321-5
PROCEEDINGS PAPER
Mechanics of Aortic Smooth Muscle Cells in Tissue Constructs: Effects of Matrix Composition
Kenneth M. Pryse,
Kenneth M. Pryse
Washington University, St. Louis, MO
Search for other works by this author on:
Elliot L. Elson,
Elliot L. Elson
Washington University, St. Louis, MO
Search for other works by this author on:
Ruth J. Okamoto
Ruth J. Okamoto
Washington University, St. Louis, MO
Search for other works by this author on:
Wei Du
Washington University, St. Louis, MO
Kenneth M. Pryse
Washington University, St. Louis, MO
Elliot L. Elson
Washington University, St. Louis, MO
Ruth J. Okamoto
Washington University, St. Louis, MO
Paper No:
SBC2008-192905, pp. 515-516; 2 pages
Published Online:
March 13, 2014
Citation
Du, W, Pryse, KM, Elson, EL, & Okamoto, RJ. "Mechanics of Aortic Smooth Muscle Cells in Tissue Constructs: Effects of Matrix Composition." Proceedings of the ASME 2008 Summer Bioengineering Conference. ASME 2008 Summer Bioengineering Conference, Parts A and B. Marco Island, Florida, USA. June 25–29, 2008. pp. 515-516. ASME. https://doi.org/10.1115/SBC2008-192905
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
3D Mechanical Properties of the Layered Esophagus: Experiment and Constitutive Model
J Biomech Eng (December,2006)
CT Visualization of Cryoablation in Pulmonary Veins
J. Med. Devices (June,2009)
Related Chapters
In Situ Observations of the Failure Mechanisms of Hydrided Zircaloy-4
Zirconium in the Nuclear Industry: 20th International Symposium
Occlusion Identification and Relief within Branched Structures
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Introduction
Modified Detrended Fluctuation Analysis (mDFA)