Although it is well known that blood vessels adapt and remodel in response to various biomechanical stimuli, quantifying changes in constitutive relation corresponding to environmental changes is still challenging. Especially, when the dimension of blood vessel is small, the uncertainties in experimental measurements become significant and make it difficult to precisely estimate parameters of constitutive relations for mechanical behavior of the blood vessel. Hence without considering measurement error in displacement, a conventional nonlinear least square (NLS) method results in a biased parameter estimation. In this paper, we propose a new parameter estimation method to eliminate such bias error and provide more accurate estimated parameters for a constitutive relation using a weighted nonlinear least square (WNLS) method with a noise model. We first applied the proposed technique to a set of synthesized data with computer generated white noises and compared the fitting results to those of the NLS method without the noise model. We also applied our method to experimental data sets from mechanical tests of rabbit basilar and mouse carotid arteries and studied parameter sensitivity of the constitutive model.

This content is only available via PDF.
You do not currently have access to this content.