Hemodynamic factors are thought to play an important role in the initiation, growth, and rupture of cerebral aneurysms. In-vitro studies have demonstrated a correlation between the magnitude and distribution of wall shear stress (WSS) and biological response of both endothelial cells and smooth muscle cells [1–3]. In elastase induced saccular aneurysms, low WSS (below 0.5 Pa) was found to have a correlation with altered expression of biological markers [4]. Localized regions of rapid aneurysm growth in-vivo have been shown to be associated with regions where WSS is below a critical value of 0.1 Pa [5]. Further, aspect ratio (AR), the ratio of the maximum diameter of the aneurysm to the width of the aneurysm neck, has been correlated with elevated risk of rupture [6]. The purpose of the current study is to explore the possibility of creating elastase induced aneurysms in rabbits with a range of aspect ratios (ratio of aneurysm height/neck) and evaluate the existence of a correlation between aspect ratio and WSS distribution. Aneurysms with ARs from 0.98 to 2.8 were created at the origin of the right common carotid artery (n = 30). Qualitative differences in WSS distribution were found in the high AR aneurysms (HARA) (AR>1.6) and low AR aneurysms (LARA) (AR<1.6) [7].

This content is only available via PDF.
You do not currently have access to this content.