Preventive measures and treatment modalities for correcting spinal disorders benefit significantly from advancements aimed at understanding the biomechanics of the human spine in the normal as well as altered states [1]. Finite element (FE) modeling is a useful tool to understand the behavior of the cervical spine under such conditions. In order for an FE model to yield clinically relevant results, the geometry must be as realistic as possible [2], in addition to incorporating accurate material properties and boundary conditions. The spine’s anatomy is very complex, rendering it difficult to acquire accurate geometrical representations for FE analysis. Many meshes in the literature are based on simplified or idealized geometries, or are assumed to be symmetric about the sagittal plane [3]. Traditional meshing techniques are time consuming and tedious, and lack remeshing capabilities [2]. The ability to create hexahedral cervical spine FE models on a patient-specific basis is a desirable task because it can account for variations in anatomy, as well as provide insight for surgical planning/treatment. Our mesh development methods improve on existing multi-block meshing methods to make this possible. We have created a C45 functional spinal unit (FSU) using these techniques, and to date have validated it by comparison to data presented in the literature.
Skip Nav Destination
ASME 2008 Summer Bioengineering Conference
June 25–29, 2008
Marco Island, Florida, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4321-5
PROCEEDINGS PAPER
Toward Patient-Specific Cervical Spine Functional Spinal Unit FE Modeling and Validation
Nicole A. Kallemeyn,
Nicole A. Kallemeyn
University of Iowa, Iowa City, IA
Search for other works by this author on:
Srinivas C. Tadepalli,
Srinivas C. Tadepalli
University of Iowa, Iowa City, IA
Search for other works by this author on:
Kiran H. Shivanna,
Kiran H. Shivanna
University of Iowa, Iowa City, IA
Search for other works by this author on:
Nicole M. Grosland
Nicole M. Grosland
University of Iowa, Iowa City, IA
Search for other works by this author on:
Nicole A. Kallemeyn
University of Iowa, Iowa City, IA
Srinivas C. Tadepalli
University of Iowa, Iowa City, IA
Kiran H. Shivanna
University of Iowa, Iowa City, IA
Nicole M. Grosland
University of Iowa, Iowa City, IA
Paper No:
SBC2008-192550, pp. 339-340; 2 pages
Published Online:
March 13, 2014
Citation
Kallemeyn, NA, Tadepalli, SC, Shivanna, KH, & Grosland, NM. "Toward Patient-Specific Cervical Spine Functional Spinal Unit FE Modeling and Validation." Proceedings of the ASME 2008 Summer Bioengineering Conference. ASME 2008 Summer Bioengineering Conference, Parts A and B. Marco Island, Florida, USA. June 25–29, 2008. pp. 339-340. ASME. https://doi.org/10.1115/SBC2008-192550
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
Cervical Column and Cord and Column Responses in Whiplash With Stenosis: A Finite Element Modeling Study
ASME J of Medical Diagnostics (May,2024)
Comparison of Load-Sharing Responses Between Graded Posterior Cervical Foraminotomy and Conventional Fusion Using Finite Element Modeling
ASME J of Medical Diagnostics (May,2024)
A Review of Finite Element Models of Ligaments in the Foot and Considerations for Practical Application
J Biomech Eng (August,2022)
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Approximate Analysis of Plates
Design of Plate and Shell Structures
Load Transfer in Single Rivet-Row Lap Joints (Conventional and Countersunk)
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading