Subject-specific finite element models provide a means to explore inter-subject biomechanical variations, and have been widely used in the study of spinal fusion such as stress-shielding due to spinal instrumentation [1], and to assess biomechanical response to aging and disease [2–4]. Three-dimensional finite element models of vertebrae are usually constructed from CT scans. However, manual generation of meshes is labor intensive. As such, techniques that simplify creation of meshes are needed to make finite element analysis more feasible for large biomechanical studies and clinical applications.

This content is only available via PDF.
You do not currently have access to this content.