Total hip replacement is one of the most successful and frequent surgery in the world; over a million of these procedures are performed every year, and the numbers are growing with the ageing of the general population. The patients who receive these implants also are younger nowadays. Major problems however still subsist with traditional hip stems: aseptic loosening is a common cause of revision surgery. The main causes of aseptic loosening are both mechanical and biological in origin. Mechanical causes include stress shielding and micromotions at bone-implant interface, and biological causes are mainly osteolysis triggered by wear debris formation and bone remodeling. To remedy the mechanical issues, a biomimetic concept was developed (patent pending): an osseointegrated stem with mechanical properties close to those of the surrounding bone would avoid both stress shielding and micromotions phenomena. To evaluate this concept, a finite element model (FEM) was developed and used to simulate bone resorption, stress shielding and micromotions [1]. The preliminary results were promising as those problems were significantly reduced with the new prosthesis, but the model still remained to be proved accurate; its bone-implant interface was of particular interest because of its decisive influence on micromotions.

This content is only available via PDF.
You do not currently have access to this content.