Mitral valve (MV) disease affects millions worldwide. An important goal of present-day heart valve research is to create bioengineered tissue valves to replace diseased mitral valves, if it is judged that mitral repair will not be durable. The design of such valves will pivot on understanding the stresses acting in the native MV leaflets to design a bioprosthesis which will withstand these stresses. In order to quantify such stresses in vivo, we utilized radiopaque marker technology and performed an “inverse” finite element analysis of the resulting 4-D data to determine the material properties of the anterior MV leaflet in the beating ovine heart. We then used these material properties in a “forward” finite element analysis to estimate the stresses in the native anterior MV leaflet.

This content is only available via PDF.
You do not currently have access to this content.