Mechanical forces due to muscle contractions play an essential role in embryonic skeletal development. In neuromuscular conditions such as congenital myotonic dystrophy, where movement of the fetus in utero is reduced or absent, the bones and joints of the newborn often show malformations [1]. In this paper, we examine the effect of muscle contractions on embryonic bone development. We propose the hypothesis that mechanical loading due to muscle contractions promotes periosteal ossification and we test this hypothesis using computational and experimental methods. A set of FE analyses were performed using anatomically realistic morphologies and loading conditions, at several timepoints during development, in order to identify biophysical stimuli active during bone formation. Avian immobilization experiments were performed to examine bone growth in the absence of skeletal muscle contractions.

This content is only available via PDF.
You do not currently have access to this content.