In vivo studies on the intervertebral disc (IVD) indicate that the magnitude, frequency, and duration of applied compression loading results in alterations in mRNA expression, composition, and annulus fibrosus structure [1]. In vivo models typically use small animal models or small sample sizes that make it difficult to evaluate multiple dependent variables on the same tissue. In this study, it was considered a priority to utilize a large animal model to investigate the effects of magnitude of compression loading on interacting dependent variable measurements of disc cell viability, biosynthesis, composition, structure, and biomechanics. A bovine IVD organ culture system was used because it provides control over mechanical and chemical boundary conditions while maintaining viable cells and normal cell-matrix interactions. To date, there are no studies investigating the response of the IVD in organ culture to dynamic mechanical loading.

This content is only available via PDF.
You do not currently have access to this content.