A large number of modern day medical interventions rely on RF ablation. It has become the treatment of choice for many types of cardiac arrhythmia to prevent the reentrant circuits [1]. However, excessive heating during RF ablation up to 100°C can cause microexplosions and severe bleeding [2]. Optimizing parameters for RF ablation in order to produce small lesions with a minimal amount of damage and bleeding constitutes a major challenge. Utilizing a thermo-electric conduction model, we address this problem for the treatment of cardiac arrhythmia. Our objective is to provide means by which non-invasive cardiac imaging data can be used to determine optimal parameters of RF ablation. A three-dimensional (3-D) finite element (FE) model that includes healthy, infarcted, and slow conducting tissues is developed. The temperature dependent thermal and electrical conductivities are considered for different tissue types.

This content is only available via PDF.
You do not currently have access to this content.