An integrated opto-electric biosensor is developed that uses an optically transparent and electrically conductive indium tin oxide (ITO) thin film coated on a slide glass substrate. This biosensor can simultaneously acquire the micro-impedance response and microscopic images of live cells in vitro under various toxic agent stimuli. The dynamic response of live porcine pulmonary artery endothelial cells (PPAECs) exposed to various doses of cytochalasin D are comprehensively examined by monitoring the micro-impedance characteristics at a specified frequency and DICM images using the opto-electric biosensor. The change in PPAEC morphology and motility caused by cytochalasin D clearly illustrates the dose-dependent actin filament disruption where optical images are correlated with the changes in the micro-electric impedance.

This content is only available via PDF.
You do not currently have access to this content.