Mechanical forces play an important role in the complicated process of atherosclerotic plaque rupture which often leads to serious clinical events such as stroke and heart attack [4]. Factors causing the vulnerable plaque cap to fracture are important clinically [2–7]. It is known that coronary plaques are more likely to rupture compared to carotid plaques under comparable conditions (such as stenosis severity at about 50% by diameter). One possible reason is that coronary arteries are under cyclic bending caused by heart motions and compressions. We hypothesize that cyclic bending of coronary atherosclerotic plaques may be a major contributor to critical stress variations in the plaque leading to increased plaque rupture risk. We have developed MRI-based 3D multi-component models with fluid-structure interactions (FSI) in order to perform flow and stress/strain analysis for atherosclerotic plaques and identify possible mechanical and morphological indices for accurate plaque vulnerability assessment [6–7].

This content is only available via PDF.
You do not currently have access to this content.