There has been a demand for hemodialysis membranes with better biocompatibility, the use of which would reduce the incidence of complications in patients who have been under long hemodialysis treatment. Recently, highly biocompatible membranes have been obtained by blending synthetic and polymers [1]. Specifically, poly(vinyl-alcohol) (PVA) and poly(acrylic acid) (PAA) have been combined with chitosan (Chi) and dextran (Dex) to create a biomaterials with excellent biocompatibility and mechanical properties. In this work we present a computational method based on molecular mechanics (MM) and dynamics (MD) techniques have been combined with an experimental studies, with the aim of designing and forecasting the permeability and diffusion properties of these membranes to small molecules, as a function of their composition.

This content is only available via PDF.
You do not currently have access to this content.