It is often of interest in studies of human movement to quantify the function of a muscle force or muscular joint torque. Such information is useful for the identification of the causes of movement disorders and for predicting the effects of interventions including surgical procedures, targeted muscle strengthening, focal treatments for spasticity, and functional electrical stimulation. One useful way to characterize the actions of muscle forces or muscular joint torques is to create linked-segment models of the body and analyze these linkages to determine the joint angular accelerations or end effector forces that result solely from the application of the muscle force or torque in question. Such induced acceleration (IA) analyses or induced end effector force (IEF) analyses have been applied most often to quantify muscle function during normal and pathological walking [1,2].

This content is only available via PDF.
You do not currently have access to this content.