Hemodynamic forces have been proposed as a major factor in thrombosis (thrombus formation) in the human cardiovascular system [1]. It has been suggested that platelet activation, aggregation and adhesion to the surface of the implants result in the formation of the mural thrombi [2]. Red blood cells (RBCs) are thought to play a significant role in the dynamics and the activation of the platelets and hence thrombus formation in the human arterial system. Previous experimental works indicate that RBCs cause platelets to migrate and move toward the vessel walls [3]. Thrombus formation has also been shown to increase as the hematocrit (Hct) increases [4]. In order to simulate the platelet dynamics requires the computational analysis of the transport and collision of the formed elements under physiological flow. In the present study, a two-dimensional (2D) simulation of the RBC/platelet dynamics in the arterioles is described.

This content is only available via PDF.
You do not currently have access to this content.