The remodeling of the cytoskeleton and focal adhesion distributions for cells on substrates with micro-patterned ligand patches is investigated using a bio-chemo-mechanical model. All the cells have approximately the same area and we investigate the effect of ligand pattern shape on the cytoskeletal arrangements and focal adhesion distributions. The model for the cytoskeleton accounts for the dynamic rearrangement of the actin/myosin stress fibers and entails the highly non-linear interactions between signaling, the kinetics of tension-dependent stress-fiber formation/dissolution and stress dependent contractility. This model is coupled with a focal adhesion (FA) model that accounts for the mechano-sensitivity of the adhesions from thermodynamic considerations. This coupled stress fiber and focal adhesion model is shown to capture a variety of key experimental observations including: (i) the formation of high stress fiber and focal adhesion concentrations at the periphery of circular and triangular, convex–shaped ligand patterns; (ii) the development of high focal adhesion concentrations along the edges of the V, T, Y and U shaped concave ligand patterns; and (iii) the formation of highly aligned stress fibers along the un-adhered edges of cells on the concave ligand patterns. When appropriately calibrated, the model also accurately predicts the radii of curvature of the un-adhered edges of cells on the concave-shaped ligand patterns.

This content is only available via PDF.
You do not currently have access to this content.