The mechanical properties of collagenous tissues are known to depend on a wide variety of factors, such as the type of tissue and the composition of its extracellular matrix. Relating mechanical roles to individual matrix components in such a complex system is difficult, if not impossible. However, as collagen is the main load bearing component in connective tissues, the relation between collagen and tissue biomechanics has been studied extensively in various types of tissues. The type of collagen, the amount and type of inter- and intramolecular covalent cross-links and collagen fibril morphology are involved in the tissues mechanical behavior (Beekman et al., 1997; Parry et al., 1978; Avery and Bailey, 2005). From literature it is known that the the collagen fibril diameter distribution can be directly related to the mechanical properties of the tissue. In particular, the diameter distribution of collagen fibrils is largely determined by the tissues requirement for tensile strength and elasticity (Parry et al., 1978).

This content is only available via PDF.
You do not currently have access to this content.