Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Date
Availability
1-20 of 251
Fatigue testing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. PVP2019, Volume 3: Design and Analysis, V003T03A051, July 14–19, 2019
Paper No: PVP2019-93393
Abstract
Abstract In Japan, the Design Fatigue Curve (DFC) Phase 1 and Phase 2 subcommittees, which are a part of the Atomic Energy Research Committee of the Japan Welding Engineering Society, have proposed new design fatigue curves and fatigue analysis methods for carbon, low-alloy, and austenitic stainless steels. To confirm the validity of the proposed design fatigue curves, a Japanese utility collaborative project was launched, and the authors conducted fully reversed four-point bending fatigue tests for large-scale specimens of carbon steel and low-alloy steel plates. Subsequently, in a previous paper (PVP2018-84456), the authors reported that the fatigue lives determined by the best-fit curve proposed by the DFC subcommittee corresponded to those of approximately 1.5–7.0-mm-deep crack initiation in large-scale specimens. In this study, the fatigue crack initiation and propagation behavior observed in large-scale specimens was investigated by using a plastic replica and beach mark method. Similar to the case of small-sized specimens, in the large-scale specimens, multiple fatigue cracks initiated at an early stage of testing, and propagated with coalescence to penetrate the specimen width. However, no fatigue cracks were detected at the design fatigue life. Approximately 100-μm-long cracks were observed, albeit only after the specimen was subjected to a number of cycles that corresponded to approximately 3.5 times the design fatigue life. According to NUREG/CR-6909 Rev.1, the crack depths in small-sized round bar specimens at the fatigue lives, which are defined by 25%-stress-drop cycles, are reported to be approximately 3 mm. The results of the large-scale tests indicated that regardless of the specimen size, nearly the same phenomenon occurred on the specimen surface until approximately 3–4-mm-deep crack initiated. The size effect was mainly caused by the stress gradient. The finite element analysis indicated that the stress gradient in the large-scale specimen was gentle owing to the large thickness of the specimen, and the stress in the vicinity of the surface was considered to be uniform. In conclusion, the size effect was not apparent. As the same conclusion can be applied to considerably larger actual components, designers do not need to consider the size effect when designing pressure vessels or piping by using the design fatigue curve determined based on small-sized specimens.
Proceedings Papers
Proc. ASME. PVP2019, Volume 3: Design and Analysis, V003T03A054, July 14–19, 2019
Paper No: PVP2019-93871
Abstract
Abstract In the 1950’s Markl et al. conducted numerous fatigue test of welded piping components that were later used to develop the ASME B31 and other piping design codes. To analyze low cycle fatigue data, Markl proposed an extrapolation method to obtain the pseudo-elastic stress for fatigue data analysis. In this paper, this extrapolation method is revisited to figure out its underlining mechanism, application scope and limitation. Two sets of fatigue data representing 4 point bending and cantilever bending condition are analyzed to support the study. A structural strain method is then proposed as an improvement and generalization of Markl’s approach, which can correlate large amount weldment fatigue data in both low-cycle and high-cycle regime by defining an equivalent structural strain parameter.
Proceedings Papers
Proc. ASME. PVP2019, Volume 3: Design and Analysis, V003T03A044, July 14–19, 2019
Paper No: PVP2019-93167
Abstract
Abstract Based on the world wide fatigue test database, The Design Fatigue Curve (DFC) Phase 1 and 2 subcommittees established in The Japan Welding Engineering Society (JWES) have been developed new design fatigue curves which are applied for the nuclear component materials, in air environment. The effects of the design factor, such as mean stress, size effect and surface finish, etc. on the fatigue curves are also discussed with the fatigue database in order to construct fatigue evaluation method for the new design fatigue curves. The subcommittees also have studied the applicability of newly developed fatigue evaluation method to the nuclear component materials. This paper reports the fatigue test results of machined finished small-scale test specimens which are used for the verification of proposed fatigue evaluation method. The materials subjected to the fatigue tests are austenitic stainless steel SUS316LTP, low-alloy steels SQV2A and SCM435H, and carbon steel STPT370. Specimens finished with lathe machining are subjected to the tests. The planed maximum height roughness of the specimen are 25 and 100 μm. The fatigue test results show that the surface finish effect on the fatigue strength in the high cycle region of the austenitic stainless steel can be negligible. On the other hand, fatigue strength of the carbon steel and low alloy steel is decreased as increasing the surface roughness of the specimen. Especially, decrease of fatigue strength for the specimens with more than 100 μm maximum height roughness is larger than that of conventional estimation. It is presumed that severe roughness introduced by lathe machining tends to behave as notches and increase the stress concentration at the specimen surface, and resulted in unexpected decrease of fatigue strength.
Proceedings Papers
Proc. ASME. PVP2019, Volume 3: Design and Analysis, V003T03A049, July 14–19, 2019
Paper No: PVP2019-93272
Abstract
Abstract In order to develop new design fatigue curves for carbon steels & low alloy steels and austenitic stainless steels and a new design fatigue evaluation method that are rational and have clear design basis, Design Fatigue Curve (DFC) Phase 1 subcommittee and Phase 2 subcommittee were established in the Atomic Energy Research Committee in the Japan Welding Engineering Society. The study on design fatigue curves was actively performed in the subcommittees. In the subcommittees, domestic and foreign fatigue data of small test specimens in air were collected and a comprehensive fatigue database was constructed. Using this fatigue database, the accurate best-fit curves of carbon steels & low alloy steels and austenitic stainless steels were developed by applying tensile strength to a parameter of the curve. Regarding design factors on design fatigue curves, data scatter, mean stress correction, surface finishing effect, size effect and variable loading effect were investigated and each design factor was decided to be individually considered on the design fatigue curves. A Japanese utility project performed large scale fatigue tests using austenitic stainless steel piping and low-alloy-steel flat plates as well as fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect and surface finishing effect. Those test results were provided to the subcommittee and utilized the above studies. In the last PVP Conference, the large scale fatigue tests using austenitic stainless steel piping were discussed for the best-fit curve of austenitic stainless steel (PVP2018-84436). In this paper, further studies are performed based on fatigue crack growth of the large scale fatigue tests using austenitic stainless steel piping. From the obtained crack growth data of the tested piping, the number of cycles at 3-mm-deep crack depth and through-wall crack of piping compares with the best-fit curve developed by the DFC1 subcommittee with considering the confidence lower bounds to survey the fatigue life of piping, and size effect for fatigue lives is discussed. The relations between the fatigue crack growths and the number of cycles and the aspect ratios are surveyed including mean stress effect.
Proceedings Papers
Proc. ASME. PVP2019, Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD), V005T05A011, July 14–19, 2019
Paper No: PVP2019-93633
Abstract
Abstract High pressure tubes are used in many industrial applications. Examples are “waterjet cutting” and “hydrogen fuel handling”. In “high pressure application’s”, pressures are handled around 800 bar. The tube dimension 9,53 mm × 3,16 mm is a typical “high pressure” dimension. This dimension can be found in many “waterjet cutting machines”. Tube is a important component in any “high pressure application”. Tubes are typically used in a fatigue environment. The tube needs to survive a certain number of pressure cycles. It is important to increase the number of “cycles” to extend the lifetime of the tube and as a result, the lifetime of the equipment. Higher lifetime rates greatly reduce planned maintenance and reduce risk of unplanned equipment breakdowns. The investigation and development to increase the fatigue properties on existing grades (mainly TP316L is this example) is a foundation to the development of a “new high pressure grade” with specific mechanical Properties. In order to prove the fatigue properties fatigue tests have been carried out under synchronized conditions, using different tubes in comparison grades. In the production of seamless tubes, there are different production methods to create different material properties. Combinations of these methods for each grade are tested and results measured relating to grain size, defect level and surface surface condition are recorded. The test tubes are produced in different production flow with different surface conditions to develop a comparison between surface conditions and the resulting fatigue related results. Two different grades TP316L and HP120 have been used to prove the test results in combination to material grades. Different tube samples run on a fatigue test bench. The test pressure is set at 3.000 bar with a sinus curve at 6 Hz. The results give a development guideline to reach the most advanced tube product for fatigue related applications.
Proceedings Papers
Matthias Bruchhausen, Alec McLennan, Roman Cicero, Caitlin Huotilainen, Kevin Mottershead, Jean-Christophe le Roux, Marc Vankeerberghen
Proc. ASME. PVP2019, Volume 1: Codes and Standards, V001T01A011, July 14–19, 2019
Paper No: PVP2019-93085
Abstract
Abstract The European project INCEFA-PLUS characterises environmentally assisted fatigue in light water reactor conditions. The project aims at developing a new procedure to assess environmentally assisted fatigue damage susceptibility in nuclear power plant components. The basis for the development of a new fatigue assessment procedure is a major test campaign carried out in eleven different laboratories across Europe which will deliver approximately 200 fatigue tests. The test campaign is based on a common test matrix that was optimized by means of the Design of Experiments method. The initial focus of the project is on the effects and interactions between the factors strain range, environment (air and light water reactor environment), surface finish, hold time, and mean strain. Whereas the bulk of the test program is carried out on a single heat of 304L austentic steel, some tests on different heats of 304L or other austenitic steels allow studying the influence of material variability. To guarantee the quality of the data, the tests are performed according to commonly agreed specifications based on ISO 12106 and each test is validated by a group of experts from within the project. The paper presents the test procedures, provides an overview of the data that has been acquired so far, and gives an outlook on the tests that will be carried out during the final stage of the project.
Proceedings Papers
Proc. ASME. PVP2019, Volume 1: Codes and Standards, V001T01A013, July 14–19, 2019
Paper No: PVP2019-93271
Abstract
Abstract To further understand the environmentally assisted fatigue (EAF) behavior of Type 316 austenitic stainless steels (SS) in a pressurized water reactor (PWR) primary water environment, the influence of non-isothermal transient conditions was investigated using hollow, small-scale fatigue specimens. In our previous study (Step I: PVP2016-63798), isothermal and non-isothermal EAF tests were performed. The non-isothermal transient conditions for the fatigue tests investigated transients that consisted of both in-phase and out-of-phase temperature and strain variations. The result of this test series showed longer fatigue lives than those predicted using the modified rate approach and the EAF multiplier (F en ) presented in the draft of NUREG/CR-6909, Revision 1. In our follow-on study (Step II: PVP2017-66233), one extra non-isothermal test was performed and application of the Weighted Stress Intensity Factor ( K ) Rate (WKR) method was discussed. In the latest Step III testing, an extra non-isothermal test with periodic beachmarking has been performed. This paper discusses, based on the completion of all EAF tests performed in Steps I – III of this project, the effects of non-isothermal conditions and recommendations which are made for treatment of non-isothermal conditions in EAF assessments.
Proceedings Papers
Proc. ASME. PVP2019, Volume 1: Codes and Standards, V001T01A034, July 14–19, 2019
Paper No: PVP2019-93909
Abstract
Abstract The fatigue degradation in Nuclear Power Plants (NPPs) is evaluated by a design fatigue curve that is published in ASME code which is based on the results of uniaxial fatigue test data. On the other hand, stress that occurs at actual piping elements, such as elbows, is not uniaxial stress but biaxial stress, with different stress ratios. Stress ratio is defined as the ratio of stress range in one axis to that in the other axis. In this study, a pressurized disc fatigue test machine is developed in order to conduct biaxial fatigue test under different stress ratio more easily and low-cost. A newly designed test specimen is adopted to generate biaxial stress under different stress ratios near the center of the specimen. This test machine can generate a specific biaxial stress with different stress ratios at specimen by adjusting air pressure and shape of the specimen.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A028, July 15–20, 2018
Paper No: PVP2018-84935
Abstract
Strain controlled LCF testing extended to 10 million cycles revealed an abrupt endurance limit enforced by secondary hardening. In elevated temperatures the ε-N curve is rotated and endurance limit is lowered, but not vanished. When very low strain rates are applied at 325°C in simulated PWR environment, fatigue life is reduced, but far less than predicted according to NUREG/CR-6909. It is possible, but not probable that the difference is due to different stainless grades studied. We assume that the test method plays a more important role. We have repeatedly demonstrated in different tests campaigns that interruptions of straining with holds aiming to simulate steady state normal operation between fatigue relevant cycles can notably extend the fatigue endurance. Further proof is again presented in this paper. The suspected explanation is prevention of strain localization within the material microstructure and also in geometric strain concentrations. This actually suggests, that hold effects should be even more pronounced in real components. Cyclic behavior of austenitic steels is very complex. Transferability of laboratory data to NPP operational conditions depends on test environment, temperature, strain rate and holds in many ways not considered in current fatigue assessment procedures. In addition to penalty factors, also bonus factors are needed to improve transferability. Furthermore, it seems that the load carrying capacity of fatigued stainless steel is not compromised before the crack growth phase. Tensile tests performed after fatigue tests interrupted shortly before end-of-life condition in 325°C (N ≈ 0.85 × N 25 ) showed strength and ductility almost identical to virgin material. This paper provides new experimental results and discusses previous observations aiming to sum up a state of the art in fatigue performance of German NPP primary loop materials.
Proceedings Papers
Marc Vankeerberghen, Matthias Bruchhausen, Román Cicero, Luc Doremus, Jean-Christophe Le-Roux, Norman Platts, Philippe Spätig, Marius Twite, Kevin Mottershead
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A014, July 15–20, 2018
Paper No: PVP2018-84081
Abstract
INCEFA-PLUS stands for INcreasing safety in nuclear power plants by Covering gaps in Environmental Fatigue Assessment. It is a five year project supported by the European Commission HORIZON2020 program that commenced in mid-2015 and in which sixteen organizations from across Europe participate. Specifically, the effects of mean strain/stress, hold time, strain amplitude and surface finish on fatigue life of austenitic stainless steels in light water reactor environments are being studied, these being issues of common interest to all participants. The project will develop proposals for improvements to methods for environmental fatigue assessment of nuclear plant components. Therefore, extensive testing capacity is being solicited in various laboratories across Europe in order to add to the existing amount of published data on environmentally assisted fatigue. Since there currently is no standard on environmental fatigue testing, it was imperative to come up with and agree upon a testing procedure within the consortium to minimize lab-to-lab variations in test results. This was done prior to the first phase of testing, but an update of the procedure was required after review of initial results, when additional potential lab-to-lab differences were identified. The current status of the so-called test protocol, and the key areas of difference found between different testing facilities, will be discussed. Due to the large test matrix within INCEFA-PLUS, distributed amongst various test laboratories, it has been necessary to develop a method to assign a data quality level to each test result, and a minimum data quality requirement for results that will be included in the project’s datasets used for analysis. Furthermore, the project has triggered international interest in facilitating mutual data access, and this requires data is gathered in a common database with data quality ratings applied. Ways to address the evaluation of data quality will be discussed. In a way, both activities, on a test protocol and on data review, jointly contribute to data quality by, respectively, ensuring a pre-test, common test procedure and a post-test, harmonized data evaluation. The large number of participants in the INCEFA-PLUS project presents a unique opportunity to gain consensus on light water reactor environment fatigue testing procedures and data quality assessment from experts working in a range of different organizations. The test protocol and data quality ratings developed within the INCEFA-PLUS project could be adopted by other organizations, or possibly used as the basis for future testing standards documents to harmonize approaches across the nuclear industry.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A022, July 15–20, 2018
Paper No: PVP2018-84490
Abstract
In order to conduct effective and rational maintenance activity of components in nuclear power plants, it is proposed to manage fatigue degradation based on crack size corresponding to an extent of cumulative fatigue damage. The purpose of this study focuses on the influence of strain rate in simulated reactor coolant environment for fatigue crack initiation and growth. 3-dimensional replica observations were conducted for environmental fatigue test specimens in different strain rates. Crack initiation and growth were observed in the experiments. It is clarified that low strain rate influences crack propagation and coalescence and increases crack growth rate that finally decrease fatigue life.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A036, July 15–20, 2018
Paper No: PVP2018-84099
Abstract
As is well known, low alloy steels are widely used as materials for high pressure vessels because of their high tensile strength and reasonable price, but also show severe hydrogen embrittlement. Therefore, in 2016, the authors introduced a scenario for the safe use of low alloy steels in highly pressurized hydrogen gas as a “Guideline” at ASME PVP 2016 [1]. Following discussions with stakeholders and experts in recent years, we published Technical Document (TD) as an industrial standard prior to regulation, on the safe use of ground storage vessels made of low alloy steels in Hydrogen Refueling Stations (HRSs) based on performance requirements. This article presents an outline of the TD describing the required types of testing as performance requirements for confirming the good hydrogen compatibility of low alloy steels, such as controlling tensile strength in an appropriate range, confirming leak-before-break, determining the life of ground storage vessels by fatigue testing and determining the inspection term by fatigue crack growth analysis using the fatigue crack growth rate in highly pressurized hydrogen.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A015, July 15–20, 2018
Paper No: PVP2018-84197
Abstract
The update of the ASME III design fatigue curve for stainless steel in conjunction with the F en model described in the NUREG/CR-6909 report has been criticized since publication. Data used to develop curves and models raises more questions than it answers. Material testing in a simulated light water reactor environment is difficult due to the temperature and pressure involved. The experimental challenge makes it tempting to take shortcuts where they should least be taken. Facing and overcoming the challenges, direct strain-controlled fatigue testing has been performed at VTT using a unique tailored-for-purpose EAF facility. The applicable ASTM standards E 606 and E1012 are followed to provide results that are directly compatible with ASME Code Section III. Several earlier PVP papers (PVP2016-63291, PVP2017-65374) report lower than calculated experimental F en factors for stabilized stainless steels. In this paper new results, in line with the previous years’ conclusions, are presented for nonstabilized AISI 304L tested with dual strain rate waveforms. To model environmental effects more accurately, an approach accounting for the damaging effect of plastic strain is proposed. A draft F en model, similar in structure to the NUREG model but with additional parameters, is shown to significantly improve the accuracy of F en prediction.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A023, July 15–20, 2018
Paper No: PVP2018-84561
Abstract
The Sodium Fast-cooled Reactor (SFR), are generation IV nuclear power plants, have a target operating temperature of 550°C which makes creep-fatigue behavior more critical than a generation III nuclear power plants. So it is important to understand the nature of creep-fatigue behavior of the piping material, Grade 91 steel. The creep-fatigue damage diagram of Grade 91 steel used in ASME-NH was derived using a conventional time-fraction testing method which was originally developed for type 300 stainless steels. Multiple studies indicate that the creep-fatigue damage diagram of Grade 91 steel developed using this testing method has excessive conservatism in it. Therefore, an alternative testing method was suggested by separating creep and fatigue using interrupted creep tests. The suggested method makes it possible to control creep life consumption freely which was difficult with the previous method. It also makes it easier to observe the interaction between creep and fatigue mechanisms and microstructural evolution. In conclusion, an alternative creep-fatigue damage diagram for Grade 91 steel at 550°C was developed using an interrupt creep fatigue testing method and FE model simulation.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A009, July 15–20, 2018
Paper No: PVP2018-84940
Abstract
Fatigue crack growth rates are expressed as a function of the stress intensity factor ranges. The fatigue crack growth thresholds are important characteristics of fatigue crack growth assessment for the integrity of structural components. Almost all materials used in these fatigue tests are ferritic steels. As a result, the reference fatigue crack growth rates and the fatigue crack growth thresholds for ferritic steels were established as rules and they were provided by many fitness-for-service (FFS) codes. However, the thresholds are not well defined in the range of negative stress ratio. There are two types of thresholds under the negative stress ratio. That is, constant thresholds and increment of thresholds with decreasing stress ratios. The objective of this paper is to introduce the thresholds provided by FFS codes and to analyze the thresholds using crack closure. In addition, based on the experimental data, definition of the threshold is discussed to apply to FFS codes. Finally, threshold for ferritic steels under the entirely condition of stress ratio is proposed to the ASME Code Section XI.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A017, July 15–20, 2018
Paper No: PVP2018-84251
Abstract
High temperature water environments typical of LWR operation are known to significantly reduce the fatigue life of reactor plant materials relative to air environments in laboratory studies. This environmental impact on fatigue life has led to the issue of US-NRC Regulatory Guide 1.207 [1] and supporting document NUREG/CR-6909 [2] which predicts significant environmental reduction in fatigue life (characterised by an environmental correction factor, F en ) for a range of actual and design basis transients. In the same report, a revision of the fatigue design curve for austenitic stainless steels and Ni-Cr-Fe alloys was proposed [2]. This was based on a revised mean curve fit to laboratory air data and revised design factors to account for effects not present in the test database, including the effect of rough surface finish. This revised fatigue design curve was endorsed by the NRC for new plant through Regulatory Guide 1.207 [1] and subsequently adopted by the ASME Boiler and Pressure Vessel (BPV) Code [3]. Additional rules for accounting for the effect of environment, such as the F en approach, have been included in the ASME BPV Code as code cases such as Code Case N-792-1 [4]. However, there is a growing body of evidence [5] [6] [7] and [8] that a rough surface condition does not have the same impact in a high temperature water environment as in air. Therefore, application of F en factors with this design curve may be unduly conservative as it implies a simple combination of the effects of rough surface and environment rather than an interaction. Explicit quantification of the interaction between surface finish and environment is the aim of a number of recent proposals for improvement to fatigue assessment methods, including a Rule in Probationary Phase in the RCC-M Code and a draft Code Case submitted to the ASME BPV Code as described in References [9] and [10]. These approaches aim to quantify the excessive conservatism in current methods due to this unrecognised interaction, describing this as an allowance for F en effectively built into the design curve. A number of approaches in various stages of development and application are discussed further in a separate paper at this conference [11]. This paper reports the results of an extensive programme of strain-controlled fatigue testing, conducted on two heats of well-characterised 304-type material in a high-temperature simulated PWR environment by Wood plc. The baseline behaviour in environment of standard polished specimens is compared to that of specimens with a rough surface finish bounding normal plant component applications. The results reported here substantially add to the pool of data supporting the conclusion that surface finish effects in a high-temperature water environment are significantly lower than the factor of 2.0 to 3.5 assumed in construction of the current ASME III fatigue design curve. This supports the claim made in the methods discussed in [9] [10] and [11] that the fatigue design curve already incorporates additional conservatism for a high-temperature water environment that can be used to offset the F en derived by the NUREG/CR-6909 methodology. At present, this observation is limited to austenitic stainless steels.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A024, July 15–20, 2018
Paper No: PVP2018-84610
Abstract
Fatigue testing campaigns are a common feature in the design and operation of advanced engineering systems in the aerospace and power generation sectors. The resulting data are typically of a high inherent technical and financial value. Presently, these data are typically transferred between departments and companies by way of ad-hoc solutions reliant on obsolete or proprietary technologies, including CSV files, MS Excel ® files, and PDFs. In these circumstances there is significant potential for data loss, inconsistency, and error. To address these shortcomings, there is a need for a systematic means of transferring data between different digital systems. With this in mind, a series of CEN Workshops on engineering materials data have taken place with a view to developing technologies for representing and exchanging engineering materials data. Most recently, a CEN Workshop on the topic of fatigue test data has delivered data formats derived from the ISO 12106 standard for axial strain-controlled fatigue testing. This paper describes the methodology for developing the data formats and demonstrates their use in the scope of the INCEFA-PLUS project on increasing safety in nuclear power plants by covering gaps in environmental fatigue assessment.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A010, July 15–20, 2018
Paper No: PVP2018-84961
Abstract
Crack closure during fatigue crack growth is an important phenomenon for predicting fatigue crack growth amount. Many experimental data show that fatigue cracks close at not only negative loads but also positive loads during constant amplitude loading cycles, depending on applied stress levels. The Appendix A-4300 in the ASME Code Section XI provides two equations of fatigue crack growth rates expressed by stress intensity factor range for ferritic steels under negative stress ratio. The boundary of two fatigue crack growth rates is classified by the magnitude of applied stress intensity factor range with the consideration of crack closure. The objective of this paper is to investigate the influence of the magnitude of the stress intensity factor range on crack closure. Fatigue tests have been performed on ferritic steel specimens in air environment at room and high temperatures. Crack closures were obtained as a parameter of stress ratio. It was found that crack closure occurs at a smaller applied stress intensity factor range than the definition given by the Appendix A-4300.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A025, July 15–20, 2018
Paper No: PVP2018-84698
Abstract
In the past 10 years, different laboratory test results lead the International Standard Development Organizations (SDO) to review their fatigue design rules in different directions, in particular to consider consequences of environmental effects on existing design rules. The key document that ask different questions to Code developers is the USNRC NUREG 6909 report: “Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials” that confirms some environmental effects on S-N fatigue tests on small specimen. The open question is: how to transfer these results to Fatigue Design Rules of plant components? This paper will review existing codified rules in major nuclear Codes; in particular USA ASME Boiler and Pressure Vessel Code Section III and French AFCEN RCC-M Code. The paper will make a first historical background of these Codes and analyze background of these rules by consideration of field experience and existing tests results. To conclude, the paper will summarize to-day “fatigue road maps” to evaluate margins and screening criteria to assure reliable and safe codified design fatigue life evaluation.
Proceedings Papers
Proc. ASME. PVP2018, Volume 1A: Codes and Standards, V01AT01A019, July 15–20, 2018
Paper No: PVP2018-84301
Abstract
Environmentally Assisted Fatigue (EAF) is receiving nowadays an increased level of attention for existing Nuclear Power Plants (NPPs) as utilities are now working to extend their life. In the wake of numerous experimental fatigue tests carried out in air and also in a PWR environment, the French RCC-M code [1] has recently been amended (in its 2016 edition) with two Rules in Probatory Phase (RPP), equivalent to ASME code-cases, “RPP-2” and “RPP-3” [2] [3]. RPP-2 consists of an update of the design fatigue curve in air for stainless steels (SSs) and nickel-based alloys, and is also associated with RPP-3 which provides guidelines for incorporating the environmental penalty “Fen” factor in fatigue usage factor calculations. Alongside this codification effort, an EAF screening has recently been carried out within EDF DT [4] on various areas of the primary circuit of the 900 MWe plants of the EDF fleet. This screening led to the identification of a list of 35 “sentinel locations” which are defined as areas most prone to EAF degradation process. These locations will be subjected to detailed EAF analysis in the stress report calculations (according to the above-mentioned RCC-M code cases) for the fourth decennial inspection of the 900 MWe (VD4 900 MWe) power plants. The potential impact of EAF on the secondary circuit components is another question to address in anticipation of the VD4 900 MWe, as they may be considered as class 1 or class 2 equipment for RCC-M application according to the equipment specification. This paper presents the approach proposed by EDF towards an exemption of environmental effects consideration for secondary circuit components. The argument is first based on a review of experimental campaigns led in Japan and France (respectively on fatigue test specimens and at the component scale) which indicate a Dissolved Oxygen (DO) content threshold below which environmental effects are almost inexistent. The (conservative) value of 40 ppb has been selected consistently with NUREG/CR-6909 revision 0 [5]. The second part of the argument is built, on the one hand, on the analysis of the EDF Technical Specifications for Operation (STE) which narrows the scope of the study only to unit outages, and, on the other hand, on the analysis of 5 years of operations of all 900 MWe plants of the EDF fleet (equivalent to 170 reactor-years). It has been shown that the DO content rarely exceeded the 40 ppb threshold in the secondary coolant, and that in this case, the considered locations were not submitted to any fatigue loading.