Abstract

Identifying the coupled system natural frequencies and dynamic behavior of systems in the presence of fluid-structure interaction is one of the most important issues in the engineering design of buildings, road vehicles and aircraft. This paper presents an efficient and flexible finite element procedure using fully vectorized codes for the free and forced vibration analysis of a rectangular plate in contact with fluid. The 4-node MITC plate finite element (MITC4) based on the Mindlin plate theory is used to simulate the plate, while the 8-node acoustic pressure element is used to simulate the fluid. The derived system of equations using structural displacements and fluid pressures yields a non-symmetric system of equations. Solving the generalized eigenvalue problem for the non-symmetric system is more computationally intensive compared to solving the generalized eigenvalue problem for symmetric systems. The modal expansion technique is used to reduce the model size. Then the reduced non-symmetric system is symmetrized by right eigenvectors. The Newmark method is used to solve the forced vibration problem of the coupled systems. The effect of the height of the fluid on the natural frequencies is discussed. The natural frequencies and transient responses are in good agreement with those obtained from the commercial finite element software. Moreover, the technique is proved to be effective to solve the coupled system.

This content is only available via PDF.
You do not currently have access to this content.