Abstract
Snubbers are used in industry to restrain piping in dynamic events which can see significant axial loading as well as lateral acceleration. Snubbers are often employed with an extension when required to bridge gaps between the piping and building structure. As a result, they are susceptible to buckling instability issues. The pipe support and restraint design by analysis buckling criteria for supports given within the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NF is investigated to determine the behavior of snubber assemblies under combined axial and lateral loadings. Four types of analyses are performed on the assemblies under the action of axial loading to demonstrate finite element and closed form solutions. These include the following: linear Eigen buckling, nonlinear second order large deformation method, energy method and Euler Bernoulli beam theory. In addition, a variety of snubber assembly sizes are subjected to combined axial and lateral loading in the form of multiple magnitudes of lateral acceleration. The behavior was analyzed by the Euler Bernoulli beam theory and nonlinear second order large deformation method. The techniques of each method are compared providing explanations of the assumptions taken, relevant limitations and recommended applications.