In the case of planar flaws detected in pressure components, flaw characterization plays a major role in the flaw acceptability assessment. When the detected flaws are in close proximity, proximity rules given in the Fitness-for-Service (FFS) Codes require to combine the interacting flaws into a single flaw. ASME Code Case N877-1 provides alternative proximity rules for multiple radially oriented planar flaws. These rules are applicable for large thickness components and account for the influence of flaw aspect ratio. They cover the interaction between surface flaws, between subsurface flaws and between a surface flaw and a subsurface flaw. The calculations of flaw interaction have been performed under pure membrane stress. However, actual loading conditions induce non-uniform stresses in the component thickness direction, such as thermal bending or welding residual stresses. Non-uniform stress fields can lead to variations in the Stress Intensity Factors of closely spaced flaws, affecting their mutual interaction. The objective of this paper is to assess the suitability of ASME Code Case N877-1 with regards to the presence of a bending part in the applied stress distribution. For that purpose, various applied stress profiles and flaw configurations are covered. The effect on flaw interaction is assessed through three-dimensional XFEM analyses.

This content is only available via PDF.
You do not currently have access to this content.