Abstract

Steel storage tanks are critical components of an industrial installation due to their high seismic vulnerability and containment of hazardous materials. Failure of a which, may lead to loss of containment (LOC) triggering domino effects such as explosion, environmental pollution, loss of functionality and disruption of business. Past earthquakes have demonstrated different type of failure modes in steel storage tanks. Although there are plenty of studies related to different failure modes like elephant foot buckling or tank uplifting, there are very few efforts on the sliding behavior of tank. Large displacements caused by the tank sliding can lead to pipe detachment and release of hazardous material which might cause damage propagation. Consequently, this damage state is very important for the Quantitative Seismic Risk Assessment of industrial plants.

In order to enumerate the sliding displacement of unanchored steel storage tanks, a simplified numerical model realized with OpenSees platform is proposed. The friction model used in OpenSees is calibrated with the results obtained from ABAQUS FE model. Sliding response of tanks with different D/H ratio is analyzed using the simplified model. Fragility curves for the tank sliding damage state are analytically evaluated for different D/H ratio of the tank using the “cloud method”. Finally, a parametric study is conducted in order to comprehend the influence of different parameters on the sliding behavior such as friction coefficient, tank filling level and the influence of the vertical component of ground motions.

This content is only available via PDF.
You do not currently have access to this content.